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E X A C T  S O L U T I O N S  OF T H E  A X I S Y M M E T R I C  E Q U A T I O N S  

OF M O T I O N  O F  A V I S C O U S  H E A T - C O N D U C T I N G  P E R F E C T  G A S  D E S C R I B E D  

BY S Y S T E M S  O F  O R D I N A R Y  D I F F E R E N T I A L  E Q U A T I O N S  

V.  V .  B u b l i k  UDC 519.46:(533+533.16+536.23) 

All invariant solutions of  rank I of the two-dimensional equations of motion of  a heat-conducting 
perfect gas with a polytropic equation of  state are described. A sufficient condition for reducibility 
of regular, partially invariant solutions of rank 1 and defect 1 to invariant solutions is given. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider the following equations of axisymmetric motion of a 
heat-conducting perfect gas with a polytropic equation of state: 

( (  2 - - r  ~ p(u t+uu~+wu, )=- -p~+-~  ~ 2u~--w.. + ( ~ ( u ~ + w r ) ) ~ + 2 ~  ; (1.1) 

( (  . 2 - 7  , r p(wt + uw~ + ww~) = - p .  + (l~(Uz + w~))~ + 5 ~ 2w. - u~ + - (u.  + w~); (1.2) 
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+ z § 
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Here p is the density, p is the pressure, # = (p/p)~ is the viscosity, ko# is the thermal conductivity, "7 is the 
adiabatic exponent,  and R is the gas constant. 

The aim of the present paper is to derive invariant solutions of rank 1 of system (1.1)-(1.4) [1] and to 
obtain a sufficient condition for reducibility of regular, partially invariant solutions of rank 1 and defect 1 to 
invariant solutions [2]. All such solutions are described by systems of ordinary differential equations. 

In [3], it is shown that Eqs. (1.1)-(1.4) admit the Lie algebra L5 with the basis 

X1 = 0,_, X2 = tO~ + Ow, X3 = Or, X4 = tot + rot + zOz - pO o - pop, (1.5) 

x5 = for + zO~ + ~0~ + wow + 2(,0 - 1)p0p + 2~pO,. 

In the same paper, the normalized optimal system of subalgebras of the Lie algebra Ls that is used in the 
present paper is constructed. The Lie group of transformations associated with this algebra is denoted by G5. 

2. I n v a r i a n t  So lu t i ons  of  R a n k  1. It is known that  invariant solutions of rank 1 of system (1.1)-(1.4) 
are constructed from two-dimensional subalgebras satisfying the necessary condition for the existence of an 
invariant solution. Table 1 gives all these subalgebras from the optimal system. The basis of the algebra H is 
denoted by the corresponding operator numbers in (1.5). For example, the basis of the algebra { X3, X4 + aX5 } 
is indicated as {3, 4 + a5}. 
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T A B L E  1 

No.  H Solution 

1 3, 4 + a5 u = ra/(~+Uul(~) ,  w = r~/(c~+l)wl(~), p = r(2~(~-a)- ') /(~+Upa(~),  
(4 r -1 )  p = r(2~-l)/(~+l)pl(O, ~ = z/T 

2 2, 4 + c~5 u = t~ul( ( ) ,  w = z / t  + t~wx(( ) ,  p = t2~(~-l)-lp~(~), 
(a  r - 1 )  p = t 2 ~ - l p l ( ( ) ,  ~ = rt  - ~ - 1  

3 1, 4 + C~5 It = t c~Ul(~)  , W = tc~Wl(~) ,  fl = t2c~(w-1)-lpl(~), p = t 2 ~ - ' p l ( ~ ) ,  
= r t -~ - I  

4 4, 5 u = r t - l u l ~ ) ,  w = r t- t tol(~) ,  p = r2(w-1) t l -2~pl(~) ,  
p = rz~~176 ~ = z / r  

5 3, 1 + 4 - - 5  u = e x p ( - - Z ) U l ( r ) , w = e x p ( - - Z ) W l ( r ) , p = e x p ( ( 1 - - 2 w ) z ) p l ( r ) ,  
p = ~xp ( - ( 1  + 2 ~ ) z ) p ~ ( ~ )  

6 2, 1 + 4 -  5 u = u l ( r ) / t ,  w = ( z -  lnt  + w , ( r ) ) / t ,  p = ta-2~pt(r) ,  
p = t - a - 2 ~ p l ( r  ) 

7 2 + 3, 4 + 5 u = rl /2Ul(() ,  w = t + r t /2wl(~) ,  p = r~-3/2p1(~),  
p = T ~ - ~ / 2 m ( ~ ) ,  ~ = (t 2 - 2z)/~ 

8 1, 2 + 4 u = u(() ,  w = In t + wl(~), p = p t (~ ) / t ,  p = p 1 ( ( ) / t ,  ~ = r / t  

9 1, 3 + 5 u = exp ( t )u l (~) ,  w = exp ( t )wl(~) ,  p = exp (2(w - 1)t)pl (~), 
p = exp (2wt)pa(~), ~ = r ex p  ( - t )  

10 1, 3 - 5 u = exp ( - t ) u l ( ~ ) ,  w = exp ( - t ) w a ( ~ ) ,  p = exp (2(1 -w) t )p l (~ ) ,  
p = exp (-2wt)pl(~),  ~ = re•  (t) 

[i 3, 5 tt = r , / l ( ~ )  , to = r w l ( ~ )  , fl = r 2 ( w - 1 ) p l ( ~ ) ,  p = r 2 w p l ( ~ ) ,  ~ = z/r 

12 2, 5 u = r u l ( t ) ,  w = ( z  + r w t ( t ) ) / t ,  p = r 2 ( ~ - U o l ( t ) ,  p = r2~px(t) 

13 1, 5 u = r u l ( t ) ,  to = r t o l ( t ) ,  p = r 2 ( ~ - l ) p l ( t ) ,  p = r2~pl(t)  

14 1, 2 + 3 u = u(r) ,  w = t + tol(r),  p = p(r) ,  p = p(r)  

i 5  i ,  3 u = u (~ ) ,  w = w ( r ) ,  p = o(T) ,  p = p ( ~ )  

A par t icular  solut ion of rank 1 can be obta ined  as follows. T h e  general  form of the  solution for a 

par t icular  subalgebra  is subs t i tu ted  into sys tem (1.1)-(1.4).  This results in a quot ient  sys tem which is a 

system of second-order  (in some cases, f irst-order) differential equations.  Quo t i en t  systems are not given here 

to save space. 
The  solutions cons t ruc ted  from subalgebras 1, 5, 11, and 15 describe s teady  gas flows, and the remaining 

solutions describe uns t eady  flows. 
Generally, only  the  analog of Eq. (1.3) in a quot ient  system can be in tegra ted  analytically,  ttowever, in 

some part icular  cases, quot ient  systems can be analyzed more thoroughly.  For th ree  subalgebras,  we give the 

result of integrat ion for constant  viscosity and the rmal  conduct ivi ty  (i.e., for w = 0). Integrat ion is carried 

out with accuracy up to the normalizer  of the corresponding subalgebra in L5. 

Subalgebra  12. In tegra t ion  of the quot ien t  sys tem yields 

1 exp (t2/2) 1 
- -  W l  = WO , P l  = - -  

ul t + to'  t + to t 
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TABLE 2 

No. H Invariant subgroups 

1 1,2,4 + a5 rt -c~-1, ut -~,  ptl-2~(~'-l), pt 1-2~ 

2 1,2,3 + 5 re -t ,  ue -t ,  pe 2(1-w)t, pe  -2wt  

3 1,2,3 - 5 re t, ue t, pe 2(~-l)t, pe 2wt 

4 1,2,3 r, u, p, p 

1,2,5 t, u/r ,  pr 2(l-w), pr -2w 

The function pl(t) is obta ined from the equation 

, ( 2 ~  7 4 7 _ ~ k o t ) p l  - 7 - 1  ( 3 ( 1 _ t  2 
Pl + + -[ t2(t + t0)2 

Subalgebra 13. Integrat ion of the quotient system yields 

1 exp (t) 
Ul = 7 '  Wl  ~ W0 t ' 

The function pl(t) is obtained from the equation 

, ( . ~  . ~ _ ~  ) " 7 - 1  
Pl + - 4 ko Pl = t2 

p 1 = 1 .  

--(~ + w02 exp (2t)) �9 

Subalgebra 15. Integrat ion of the quotient system yields two integrals 

r u p  ~ Cl ,  W = WO r c l .  

The remaining equations 

+ t~o)+ wo~ exp (tb). 

4( })' o ' ,  
- u t +  - - C l - - - -  = 0 ,  
3 r 

_ + 7 )' ) + - T +  
are used to obtain the functions u(r) and p(r). 

3. P a r t i a l l y  I n v a r i a n t  S o l u t i o n s  R e d u c i b l e  t o  I n v a r i a n t  S o l u t i o n s .  Invariant solutions are 
constructed more easily than  partially invariant solutions. Therefore, using criteria for sifting out partially 
invariant solutions reducible to invariant solutions, we can concentrate on constructing irreducible solutions. 
Here we consider a sufficient condition for reducibility of regular, partially invariant solutions of rank 1 and 
defect 1 to invariant solutions. Since all such solutions are reduced to invariant solutions of rank 1, it is not 
necessary to study them separately: all these solutions were described above. 

T h e o r e m .  If  the universal invariant of the subgroup H C G5 can be written as 

J =  (4(t,r), A( t ,r)u ,  B ( t , r )p ,  C(t ,r)p),  (3.1) 

where ~, A, B,  and C are some functions, then the corresponding regular, partially invariant H-solution of 
rank 1 and defect 1 of system (1.1)-(1.4) is reducible to an invariant solution. 

P r o o f .  It is known that  the rank and defect of a partially invariant solution are invariant with respect 
to the similarity t ransformation of subgroups. Analysis of the invariants of all subgroups shows that  for each 
subgroup condition (3.1) is also invariant with respect to the similarity transformation of the subgroups. 
Therefore, it suffices to prove the theorem only for the subgroups from the optimal system. All the subgroups 
satisfying the condition (3.1) are listed in Table 2. The  nota t ion  for the subalgebras is the same as in Table 1. 
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The general ideas of the proof are as follows. For each subgroup in Table 2, the invariants specify the 
general form of the solution. For O~/Or # O, it follows from Eq. (3.1) that 

Z 
w(t, r, z) = ~(~) 7 + v(t, ~), (3.~) 

o r  

w(t, r, z) = ~,(~)z + v(t, O. (3.3) 

Then, Eq.(1.4) takes the form 

F(~)+ (fl(t)~'z+ f2(t)0~-~) 2 =  0, (3.1) 

where F, fl ,  and ]'2 are known functions (particular for each subgroup). It follows from (3.4) that cy' = 0. 
For ~ = t, (3.2) or (3.3) takes the form w(t, r, z) = ~(t)z + v(t, r), and (3.4) becomes 

(0v)2 
F(t)+ \Or] = 0. (3.5) 

Integrals of Eqs. (3.4) and (3.5) are used to analyze Eq. (1.1). As a result, we obtain the general form of w. 
which is then used to determine the subgroup with respect to which the solution obtained is invariant. 

Proofs for each particular subgroup are not given here. We note that all solutions are reduced to 
solutions that are invariant with respect to groups similar to subgroups 3, 6, 9, 10, 12, 13, and 15 in Table 1. 
The theorem is proved. 

Among all subgroups from which it is possible to construct regular, partially invariant solutions of rank 
1 and defect 1, only two subgroups do not satisfy condition (3.1). They yield partially invariant solutions that 
are not reducible to invariant solutions and are not considered here. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01- 
005t5). 
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